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Atrial fibrillation is the most common cardiac arrhythmia and is associated with multifactorial pathophysiology influenced by autonomic 
nervous system. Both excessive sympathetic and parasympathetic tone can facilitate initiation of atrial fibrillation. Neuromodulation 
options of the cardiac autonomic nervous system for atrial fibrillation include endocardial or surgical ganglionated plexus ablation, 

ethanol ablation of vein of Marshall, renal sympathetic denervation, baroreflex therapy, transcutaneous vagal nerve stimulation and stellate 
ganglion blockade. To date, these therapies have demonstrated variable efficacy in patients with atrial fibrillation. In this article, we review 
the anatomical and pathophysiological importance of autonomic nervous system for atrial fibrillation and summarize the promising clinical 
studies on these new modalities.

Highlights
•	 The autonomic nervous system plays a critical role in the aetiopathogenesis of atrial 

fibrillation (AF).

•	 Neuromodulation of the autonomic nervous system has been a topic of increased interest in 

the management of AF.

•	 Ablation of ganglionated plexi, ethanol ablation of the vein of Marshall, renal denervation and 

pulmonary vein isolation have demonstrated promising results in well-selected patients with 

AF.

•	 Transcutaneous vagus nerve stimulation might be a non-interventional treatment option to 

increase AF-free survival.

•	 There are still unanswered questions regarding which patients would benefit the most from 

neuromodulation strategies.

Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with significant 

morbidity and healthcare utilization.1–3 In attempts to blunt the effect of this common and complex 

entity, there has been an increasing interest in improving our understanding of the pathogenic basis 

governing AF.4–13 Although pulmonary vein isolation (PVI) remains the gold standard, adjunctive 

ablative approaches for patients with persistent forms of AF have been studied but appear to yield 

modest additional benefits at most when empirically applied.8,14–27 Furthermore, the most recent 

technological advancements have focused more on improving procedural efficiency through novel 

technologies and improving patient selection.26,28–38 One area of heightened research is unravelling 

the relationship between the cardiac autonomic nervous system (ANS) and the establishment and 

maintenance of AF, thereby developing neuromodulatory interventions.26,39–47 In this article, we 

dive into the link between the ANS and AF and discuss the established and emerging strategies to 

manage AF via neuromodulation.

The neurocardiac axis
Understanding the neurocardiac axis and how it affects AF pathogenesis is essential to 

comprehending the role of neuromodulation in the management of AF.

The link between the heart and the brain has long been established. In the late 1800s, Gaskell 

and Langley were the first to describe the basic structure of the ANS to add clarity to how it 

regulates the cardiovascular system.48 Nearly four decades later, Cannon described homeostasis, 

the process whereby the ANS regulates critical physiological parameters.49 In subsequent years, 

many observational studies have focused on patients with primary nervous system pathologies 

and how these disorders affect the regulation of the cardiovascular system.50

https://doi.org/10.17925/EJAE.2024.10.1.3
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The modulation of the neurocardiac axis in the setting of systemic 

illnesses, such as embolic stroke and AF, or subarachnoid haemorrhage 

and stress-induced cardiomyopathy has only recently been better 

understood and has led to new therapeutic interventions. Based on the 

data from many clinical studies, there are multiple cortical and subcortical 

regions in the central nervous system (CNS) that form larger networks 

that innervate the cardiovascular system.51,52 These networks include 

brainstem regions, such as the ventrolateral medulla, and areas in the 

cortex, such as the dorsal cingulate cortex. However, the area that plays 

the greatest role in the regulation of the heart–brain axis is the insular 

cortex.51,52 The posterior insular cortex receives the cardiac input via the 

thalamus.53,54 Heart rate increases and decreases with the stimulation 

of the rostral and caudal insular cortices, respectively.55 Moreover, the 

stimulation of the right and left insula leads to increased sympathetic 

and parasympathetic tones, respectively.

The sympathetic nervous supply to the heart originates from neurons 

located in the intermediolateral column of the upper thoracic spinal 

cord.56 These neurons form synapses in the cervicothoracic stellate 

ganglia. The sympathetic effects of these neurons are mediated by B1 

receptors on cardiac myocytes. These receptors send their signals 

via a G-protein-coupled mechanism that increases the levels of cyclic 

adenosine monophosphates.57,58 The parasympathetic fibre supply to the 

heart originates from the dorsal motor nucleus in the medulla, travels 

along the vagus nerve and finally forms synapses with postganglionic 

neurons in the intrinsic (autonomic) cardiac ganglia. Acetylcholine is the 

main neurotransmitter for these parasympathetic fibres. Acetylcholine 

binds to M2 muscarinic receptors after being released by postganglionic 

parasympathetic fibres, leading to the opening of potassium channels 

and ultimately a decrease in heart rate and contractility. In addition, 

there is cerebral lateralization in cardiac autonomic control, with the 

right cerebral hemisphere predominantly modulating the sympathetic 

activity.59

There are other neuromodulators released from the myocardium and 

coronary vessels that regulate the sympathetic and parasympathetic 

tones. Angiotensin II released by the myocardium increases the 

sympathetic activity, while C-type natriuretic peptide increases the 

parasympathetic activity.60

Electrocardiographic changes are frequently observed after brain 

injuries. Sympathetic hyperactivity after brain injuries leads to an 

enhanced calcium influx, which alters the endocardial conduction 

system.61,62 These changes are more common in the first 24  h after 

acute neurological injuries. Furthermore, pathophysiological activation of 

the insular cortex by stroke or epileptic seizure or under conditions of 

severe emotional stress could predispose to electrocardiogram changes, 

cardiac arrhythmias and sudden death via autonomic effects.63

When the regulation of the ANS is impaired, distinct cardiovascular 

changes occur. Autonomic dysregulation can lead to either increased 

or decreased sympathetic tone. Primary CNS pathologies that are 

associated with autonomic dysfunction include cerebrovascular 

diseases (strokes) spinal cord diseases and neurodegenerative diseases 

(Parkinson’s disease).64,65 Peripheral nervous system pathologies that 

lead to ANS failure include neuropathies secondary to diabetes mellitus, 

paraneoplastic syndromes and autoimmune conditions.64

The clinical features of autonomic dysfunction include presyncope, 

syncope and loss of balance. Presyncope and syncope in the setting of 

autonomic dysfunction are usually due to orthostatic hypotension.65 This 

can usually be treated with conservative measures, such as maintaining 

adequate hydration, increasing sodium intake and avoiding strenuous 

activity after meals or, in select cases, via cardioneural ablations.66–69

Cardiovascular manifestations are observed in many neurological 

disease states in addition to autonomic dysfunction. Both ischaemic and 

haemorrhagic strokes are associated with bradycardia, heart block and 

tachyarrhythmias. AF is the most frequently observed arrhythmia after a 

stroke.70,71 These cardiac manifestations post-stroke are associated with 

an increased mortality.72

Another example highlighting the brain–heart connection is cardiac 

arrhythmias observed in temporal epilepsy. Ictal and post-ictal heart 

blocks can be observed in this case. Although these rhythms are 

frequently benign, they can convert into life-threatening arrhythmias, such 

as ventricular fibrillation, ventricular tachycardia and supraventricular 

tachycardia.73–76

A better understanding of the anatomic basis of the neurocardiac axis 

and the alterations that occur in various pathological states has led to 

the development of new therapies aimed at modulating the adverse 

effects encountered during disease states. For example, many refractory 

tachyarrhythmias can be treated by nerve blocks of the cardiac 

sympathetic ganglia. Vagal nerve stimulation has also been shown to 

protect against both atrial and ventricular arrhythmias.77

Our understanding of the heart–brain axis and its clinical implications 

has expanded considerably over the last half-century. However, there is 

still more progress needed in this important area. The pathophysiology 

of the cardiovascular effects of nervous system pathologies, such 

as subarachnoid haemorrhage or traumatic brain injury, is not well 

understood. Further research that uses expertise across multiple 

specialities including cardiology, neurology and critical care, will improve 

our understanding of the neurocardiac axis and lead to new innovative 

treatments for patients.

Key intrinsic cardiac neuroanatomy
Central to the discussion on the ANS and cardiac function is the 

understanding of the difference between the distribution of sympathetic 

and parasympathetic nerve fibres and their ganglia. In the sympathetic 

nervous system, the pre-ganglionated fibres are short, with the ganglia 

residing in the spinal cord, while the post-ganglionated fibres are long 

and terminate in the effector organ (e.g. the heart). This contrasts with 

the parasympathetic system, in which the pre-ganglionated fibres are 

long, with the autonomic ganglia residing within the target organs.78 In 

the heart, this takes the form of clusters of ganglia, distributed within 

the epicardial tissue around the atria and the ventricle and called 

ganglionated plexus (GP).79 While the precise locations, densities and 

distributions of these GPs may vary, Armour et al. described their typical 

locations and set forth the nomenclature.80

The following anatomical areas contain most of the intrinsic cardiac 

ganglia: superior (anterior) right atrial GP on the posterosuperior surface 

of the right atrium (RA) in the region of the superior vena cava–RA 

junction, inferior (posterior) right atrial GP in the region of interatrial 

groove, superior left atrial GP on the posterosuperior surface of the left 

atrium (LA), inferior (posterolateral) left atrial GP on the posterolateral 

surface of the LA and posteromedial left atrial GP on the posteromedial 

medial surface of the LA near coronary sinus ostium. The vein of Marshall 

(VOM) may also be considered a part of the cardiac ANS because 

parasympathetic fibres from the VOM innervate the surrounding left 
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atrial structures and the coronary sinus (the Marshal tract GP).81 This is 

further illustrated in Figure 1.

Autonomic nervous system and atrial fibrillation
The relationship between AF and alterations of ANS has been 

established.82,83 Coumel et al. hypothesized that changes in vagal tone act 

as a trigger for AF.84 This has been complemented by early observations 

of a circadian variation in the AF burden in some individuals, which was 

hypothesized to be likely linked to changes in autonomic tone throughout 

the day.85,86 Other signs of ANS involvement in AF are the phenotype of 

vagal AF, in which the patients are observed to have AF triggered during 

the periods of bradycardia. These associations have been elucidated by 

the findings of multiple basic science and clinical studies.62,87,88

Inputs from the ANS have been implicated in the pathogenesis of AF 

via multiple proposed mechanisms although many questions remain 

unanswered.4 These include alterations in the action potential duration, 

induction of rapid firing of early afterdepolarization and changes in atrial 

refractoriness induced by modifications in parasympathetic tone.89,90 

Furthermore, it has been noted that the alteration of autonomic tone via 

the injection of agents with parasympathetic properties into epicardial 

fat pads rich in GPs can result in increased inducibility and maintenance 

of AF.91 Additionally, in vitro canine studies have shown that autonomic 

nerve stimulation can lead to pulmonary vein firing and induce AF.92

Neuromodulation for the control of atrial 
fibrillation
Catheter-based therapies with PVI have been the backbone of 

AF management and are currently recommended by most major 

societies.3,93,94 However, given the need for additional strategies to improve 

outcomes in AF, several catheter-based techniques to modulate the ANS 

have been explored. These include intrinsic neuromodulation within the 

heart and anatomic nervous inputs originating outside the heart (Table 1).

Figure 1: The schematic view of ganglionated plexi

White, pink and red dots show the distribution of ablation points based on fragmented bipolar electrograms Reproduced with permission from Aksu et al.81

CS = coronary sinus; IVC = inferior vena cava; LIGP = left inferior atrial ganglionated plexi; LIPV = left inferior pulmonary vein; LSGP = left superior atrial ganglionated plexi; LSPV = left 
superior pulmonary vein; MTGP = Marshall tract ganglionated plexi; PMLGP = posteromedial left atrial ganglionated plexi; R = right; RIGP = inferior right atrial ganglionated plexi, RIPV 
= right inferior pulmonary vein; RSGP = right superior atrial ganglionated plexi; RSPV = right superior pulmonary vein; SVC = superior vena cava.

Table 1: Techniques for neuromodulation in atrial fibrillation

Location Neuromodulation technique

Cardiac targets

Endocardial ganglionated plexus 
ablation

Vein of Marshall ethanol infusion

Extracardiac targets

Renal denervation

Stellate ganglion blockade

Baroreflex therapy

Transcutaneous vagal nerve 
stimulation
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Endocardial neuromodulation
One technique gaining traction in the management of AF is 

neuromodulation via endocardial-targeting GPs. Cardioneuroablation is 

based on the observation that the heart rate is higher after PVI due to the 

destruction of GPs. GP might be identified during an electrophysiological 

study (EPS) via an electrogram analysis. These include the identification of 

fractionated atria electrograms with one of the following characteristics 

as outlined in Table  2 and illustrated in Figure  2. Once identified, it 

can be targeted for radiofrequency ablation using catheter-based 

techniques.95–98 However, a fragmented electrogram-guided strategy 

has some limitations in both specificity and sensitivity. Specificity may 

be limited, as fragmented electrograms may represent the areas of 

atrial fibrosis, pulmonary vein (PV) potentials or double potentials. 

Moreover, the adipose tissue surrounding the heart can infiltrate the 

atrial myocardium, causing heterogeneous activation and resulting in the 

presence of fragmented electrograms.

The identification of GPs through an EPS may be achieved via high-

frequency simulation (HFS), in which case the LA is paced with the ablation 

catheter at a rate that exceeds the intrinsic sinus rate. Additionally, HFS is 

applied at -20 Hz, between 10 and 140 V and at a 1–10 ms pulse width in 

the anatomical regions where GPs are known to present.99

Ablation of these GPs in these locations has been associated with 

decreased rates of AF when compared with PVI alone, although ablation 

techniques and acute procedural endpoints tend to vary amongst 

centres.26,100 Long-term effects of GP ablation performed adjunctive to 

PVI remain unknown, such as the durability due to the phenomenon 

of nerve regeneration and reinnervation following RF and cryoablation. 

As non-thermal technologies for PVI, such as pulsed-field ablation, 

proliferate in clinical practice, the necessity for deliberate GP ablation 

may increase as the delivered pulsed electric fields tend to spare GPs 

when endocardial ablation is performed.41,101,102

Ethanol ablation of the vein of Marshall
There is increasing evidence that intrinsic cardiac innervation via the 

ANS, which plays a significant role in the pathogenesis of AF, is located in 

the LA. The ligament of Marshall and its extension as the VOM have been 

considered parasympathetic and sympathetic inputs and implicated in 

the pathogenesis of AF by multiple proposed mechanisms.103,104

To examine the parasympathetic denervation via ethanol infusion in the 

VOM (which connects to the ligament of Marshall), Báez-Escudero et 

al. performed a retrograde ethanol injection into the VOM at the time 

of AF ablation. Of the 133 patients enrolled in the study, successful 

VOM ablation was performed in 80 patients, with acute elimination of 

parasympathetic responses and AF inducibility.105

From a clinical standpoint, ethanol infusion in the VOM has been shown 

to have some benefits over catheter ablation alone, as was demonstrated 

Table 2: Characteristics of electrogram to determine the 
location of ganglionated plexi

EGM characteristics Criteria

Normal EGM <4 deflections or ≤40 ms duration

Low-amplitude fractionated EGM ≥4 deflections or >0.7 mV amplitude

High-amplitude fractionated EGM ≥4 deflections, >0.7 mV amplitude or 
>40 s duration

EGM = electrogram; ms = millisecond; mV = millivolt; s = second.

Figure 2: Three types of bipolar atrial electrogram for ganglionated plexus mapping

Reproduced with permission from Aksu et al.81

HAFE = high-amplitude fragmented electrogram; LAFE = low-amplitude fragmented electrogram; Normal = normal atrial electrogram.
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in the Vein of Marshall Ethanol Infusion for Persistent AF (VENUS) trial (​

ClinicalTrials.​gov identifier: NCT01898221) and other studies.8,106 In 

this randomized single-blinded trial, which included 350 patients with 

persistent AF, participants were randomized either to catheter ablation 

alone or to catheter ablation with the addition of ethanol infusion in the 

VOM. This finding of improved recovery from AF was substantiated by a 

meta-analysis focused on the long-term outcomes when VOM ethanol 

infusion was added to PVI compared with PVI alone.107 Regarding safety, 

a study of 700 patients by Kamakura et al. showed that VOM ethanol 

infusion was feasible with relatively low complication rates, and the main 

complication was delayed tamponade at a rate of 0.8%.108 Additional 

research on this subject continues, with favourable findings suggesting 

that apart from the addition of VOM ethanol infusion to PVI, AF recurrence 

could also be decreased further if linear lesion sets are added (dome, 

mitral and cavotricuspid isthmus).109

Sympathetic denervation
Given the association of AF with heightened sympathetic activity, 

sympathetic denervation has been evaluated extensively. One explored 

strategy is renal sympathetic denervation, which is a technique that has 

been targeted originally for the control of hypertension. However, the 

results of renal denervation, as demonstrated via the SYMPLICITY HTN-3 

trial (Renal Denervation in Patients With Uncontrolled Hypertension; ​

ClinicalTrials.​gov identifier: NCT01418261), failed to show blood pressure 

reductions with renal artery denervation.110

In this approach, ablation at the bifurcation of the renal artery was 

performed. In the Atrial Fibrillation Reduction by Renal Sympathetic 

Denervation trial by Feyz et al., following renal artery denervation, the 

AF burden decreased from 1.39 min/day prior to renal denervation to 

0.94 min/day 12 months post-renal denervation (p=0.03).111 This was 

associated with statistically significant improvements in quality of life.

To substantiate these findings further, the Effect of Renal Denervation 

and Catheter Ablation versus Ablation alone on Atrial fibrillation 

Recurrence Among Patients with Paroxysmal Atrial Fibrillation and 

Hypertension (ERADICATE-AF; ​ClinicalTrials.​gov identifier: NCT01873352) 

trial was conducted.112 In this trial involving 302 patients, patients were 

randomized either to PVI alone or to PVI + renal denervation. During the 

12 months of follow-up post-procedure, freedom from AF, atrial flutter 

or atrial tachycardia was observed in 72.1% of patients undergoing 

renal denervation in addition to PVI, compared with only 56.5% of 

patients undergoing PVI alone. Interestingly, significant reductions in 

systolic blood pressure were observed in persons undergoing renal 

denervation, a finding that was not observed in the Simplicity HTN-3 

trial.110 Furthermore, renal denervation has been shown in pilot studies 

to be a means to prevent subclinical AF in patients with a history of 

hypertension or heart disease at risk for the development of AF.113 More 

recently, however, in the long-term follow-up for the AFFORD trial, there 

was no significant reduction in the AF burden during the 3-year follow-up. 

In patients with both AF and hypertension, treatment of hypertension 

should aim for current blood pressure guidelines to reduce stroke, 

bleeding and other adverse outcomes.114 Considering there were fewer 

atrial arrhythmia recurrences and better blood pressure control among 

participants treated with renal denervation and PVI in the ERADICATE-AF 

trial, renal denervation in addition to PVI might be reasonable in well-

selected patients with AF and uncontrolled hypertension.

Stellate ganglion block
Sympathectomy via surgical approaches and percutaneous stellate 

ganglion block has gained popularity in the management of ventricular 

tachycardia storm.115–121 This has been shown to have acute benefits in 

reducing AF inducibility in animal studies and small human trials.122–124 

More recently, the use of stellate ganglion block at the time of coronary 

artery bypass graft was studied in a small randomized controlled trial of 

40 patients.122 Participants were randomized either to a control group 

or to an ultrasound-guided left stellate ganglion block group with the 

injection of 10 mL of 2% lidocaine. While statistically significant decreases 

in arrhythmia were observed in the intraoperative period, no difference 

between the two groups was observed during the early postoperative 

period.125

Additional neuromodulatory techniques for atrial 
fibrillation management
While not catheter-based therapies, a few approaches that result 

in neuromodulation have been examined to augment the standard 

management of AF, one of which includes transcutaneous vagus nerve 

stimulation.

The principle governing transcutaneous vagus nerve stimulation is that 

low levels of stimulation of the vagus nerve can decrease parasympathetic 

tone and blunt vagally mediated AF.126,127 Beyond alterations in autonomic 

tone, low-level transcutaneous vagus nerve stimulation (LLTS) has been 

associated with decreased inflammatory cytokines, which may function 

as a driver for AF.126 In the Transcutaneous Electrical vAgus nerve 

sTimulation to suppression Atrial Fibrillation (TREAT AF; ​ClinicalTrials.​

gov identifier: NCT02548754) trial, patients were randomized to the LLTS 

group (20 Hz and 1 mA), in which it was administered via an ear clip 

(tragus), versus sham. After a 6-month follow-up period, the AF burden 

was 85% lower in the treatment group versus the sham group (0.15, 95% 

confidence interval 0.03–0.65, p=0.011).128 In a recently published study, 

the effect of acupuncture at the auricular branch of the vagus nerve on 

the autonomic system was investigated in humans. In comparison with 

placebo acupuncture, acupuncture at the auricular branch of the vagus 

nerve caused a significant reduction in heart rate and an increase in 

overall heart rate variability parameters in favour of vagal tone.129 Further 

investigation on this subject may be worthwhile; however, the potential 

loss of effect with the cessation of the device use was an unattractive 

feature. Nonetheless, its role as an adjunct tool for AF management 

in select patients might be considered if its utility is validated in large 

studies.

Summary position
According to the published literature, endocardial ablation of GPs in 

conjunction with PVI confers a higher success rate than the PVI-alone 

strategy when treating patients with paroxysmal AF.100,130 On the other 

hand, endocardial ablation of GPs without PVI or surgical GP ablation 

has no role in clinical success.100,131 Although the published data to 

date do not yet support endocardial GP ablation as an alternative to 

PVI, in appropriately selected subgroups of patients, endocardial GP 

ablation in addition to PVI might be a potential alternative to PVI-alone 

strategy.

VOM ethanol ablation in addition to PVI may play an important role in 

preventing AF recurrence in patients with persistent AF and might be 

used as a first-line strategy in patients with persistent AF. Adding renal 

denervation to PVI should only be an option in patients with AF with 

accompanying uncontrolled hypertension. Larger randomized controlled 

studies are needed to define suitable candidates for these alternative 

strategies.
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Conclusion
As our quest for improved outcomes in AF continues, developing 

management strategies to tackle the disease process on its multiple 

pathophysiological fronts is warranted. While not universally applicable, 

neuromodulation as an additive strategy in appropriately selected 

patient populations may be useful. q
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